package Delaunay;

/*
 * Copyright (c) 2005 by L. Paul Chew.
 * 
 * Permission is hereby granted, without written agreement and without
 * license or royalty fees, to use, copy, modify, and distribute this
 * software and its documentation for any purpose, subject to the following 
 * conditions:
 *
 * The above copyright notice and this permission notice shall be included 
 * in all copies or substantial portions of the Software.
 * 
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER 
 * DEALINGS IN THE SOFTWARE.
 */

/**
 * Points in Euclidean space, implemented as double[].
 * 
 * Includes simple geometric operations.
 * Uses matrices; a matrix is represented as an array of Pnts.
 * Uses simplices; a simplex is represented as an array of Pnts.
 * 
 * @author Paul Chew
 * 
 * Created July 2005.  Derived from an earlier, messier version.
 */
public class Pnt {
    
    private double[] coordinates;          // The point's coordinates
    
    /**
     * Constructor.
     * @param coords the coordinates
     */
    public Pnt (double[] coords) {
        // Copying is done here to ensure that Pnt's coords cannot be altered.
        coordinates = new double[coords.length];
        System.arraycopy(coords, 0, coordinates, 0, coords.length);
    }
    
    /**
     * Constructor.
     * @param coordA
     * @param coordB
     */
    public Pnt (double coordA, double coordB) {
        this(new double[] {coordA, coordB});
    }
    
    /**
     * Constructor.
     * @param coordA
     * @param coordB
     * @param coordC
     */
    public Pnt (double coordA, double coordB, double coordC) {
        this(new double[] {coordA, coordB, coordC});
    }
    
    /**
     * Create a String for this Pnt.
     * @return a String representation of this Pnt.
     */
    public String toString () {
        if (coordinates.length == 0) return "()";
        String result = "Pnt(" + coordinates[0];
        for (int i = 1; i < coordinates.length; i++)
            result = result + "," + coordinates[i];
        result = result + ")";
        return result;
    }
    
    /**
     * Equality.
     * @param other the other Object to compare to
     * @return true iff the Pnts have the same coordinates
     */
    public boolean equals (Object other) {
        if (!(other instanceof Pnt)) return false;
        Pnt p = (Pnt) other;
        if (this.coordinates.length != p.coordinates.length) return false;
        for (int i = 0; i < this.coordinates.length; i++)
            if (this.coordinates[i] != p.coordinates[i]) return false;
        return true;
    }
    
    /**
     * HashCode.
     * @return the hashCode for this Pnt
     */
    public int hashCode () {
        int hash = 0;
        for (int i = 0; i < this.coordinates.length; i++) {
            long bits = Double.doubleToLongBits(this.coordinates[i]);
            hash = (31*hash) ^ (int)(bits ^ (bits >> 32));
        }
        return hash;
    }
    
    /* Pnts as vectors */
    
    /**
     * @return the specified coordinate of this Pnt
     * @throws ArrayIndexOutOfBoundsException for bad coordinate
     */
    public double coord (int i) {
        return this.coordinates[i];
    }
    
    /**
     * @return this Pnt's dimension.
     */
    public int dimension () {
        return coordinates.length;
    }
    
    /**
     * Check that dimensions match.
     * @param p the Pnt to check (against this Pnt)
     * @return the dimension of the Pnts
     * @throws IllegalArgumentException if dimension fail to match
     */
    public int dimCheck (Pnt p) {
        int len = this.coordinates.length;
        if (len != p.coordinates.length)
            throw new IllegalArgumentException("Dimension mismatch");
        return len;
    }
    
    /**
     * Create a new Pnt by adding additional coordinates to this Pnt.
     * @param coords the new coordinates (added on the right end)
     * @return a new Pnt with the additional coordinates
     */
    public Pnt extend (double[] coords) {
        double[] result = new double[coordinates.length + coords.length];
        System.arraycopy(coordinates, 0, result, 0, coordinates.length);
        System.arraycopy(coords, 0, result, coordinates.length, coords.length);
        return new Pnt(result);
    }
    
    /**
     * Dot product.
     * @param p the other Pnt
     * @return dot product of this Pnt and p
     */
    public double dot (Pnt p) {
        int len = dimCheck(p);
        double sum = 0;
        for (int i = 0; i < len; i++)
            sum += this.coordinates[i] * p.coordinates[i];
        return sum;
    }
    
    /**
     * Magnitude (as a vector).
     * @return the Euclidean length of this vector
     */
    public double magnitude () {
        return Math.sqrt(this.dot(this));
    }
    
    /**
     * Subtract.
     * @param p the other Pnt
     * @return a new Pnt = this - p
     */
    public Pnt subtract (Pnt p) {
        int len = dimCheck(p);
        double[] coords = new double[len];
        for (int i = 0; i < len; i++)
            coords[i] = this.coordinates[i] - p.coordinates[i];
        return new Pnt(coords);
    }
    
    /**
     * Add.
     * @param p the other Pnt
     * @return a new Pnt = this + p
     */
    public Pnt add (Pnt p) {
        int len = dimCheck(p);
        double[] coords = new double[len];
        for (int i = 0; i < len; i++)
            coords[i] = this.coordinates[i] + p.coordinates[i];
        return new Pnt(coords);
    }
    
    /**
     * Angle (in radians) between two Pnts (treated as vectors).
     * @param p the other Pnt
     * @return the angle (in radians) between the two Pnts
     */
    public double angle (Pnt p) {
        return Math.acos(this.dot(p) / (this.magnitude() * p.magnitude()));
    }
    
    /**
     * Perpendicular bisector of two Pnts.
     * Works in any dimension.  The coefficients are returned as a Pnt of one
     * higher dimension (e.g., (A,B,C,D) for an equation of the form
     * Ax + By + Cz + D = 0).
     * @param point the other point
     * @return the coefficients of the perpendicular bisector
     */
    public Pnt bisector (Pnt point) {
        int dim = dimCheck(point);
        Pnt diff = this.subtract(point);
        Pnt sum = this.add(point);
        double dot = diff.dot(sum);
        return diff.extend(new double[] {-dot / 2});
    }
    
    /* Pnts as matrices */
    
    /**
     * Create a String for a matrix.
     * @param matrix the matrix (an array of Pnts)
     * @return a String represenation of the matrix
     */
    public static String toString (Pnt[] matrix) {
        StringBuffer buf = new StringBuffer("{");
        for (int i = 0; i < matrix.length; i++) buf.append(" " + matrix[i]);
        buf.append(" }");
        return buf.toString();
    }
    
    /**
     * Compute the determinant of a matrix (array of Pnts).
     * This is not an efficient implementation, but should be adequate 
     * for low dimension.
     * @param matrix the matrix as an array of Pnts
     * @return the determinnant of the input matrix
     * @throws IllegalArgumentException if dimensions are wrong
     */
    public static double determinant (Pnt[] matrix) {
        if (matrix.length != matrix[0].dimension())
            throw new IllegalArgumentException("Matrix is not square");
        boolean[] columns = new boolean[matrix.length];
        for (int i = 0; i < matrix.length; i++) columns[i] = true;
        try {return determinant(matrix, 0, columns);}
        catch (ArrayIndexOutOfBoundsException e) {
            throw new IllegalArgumentException("Matrix is wrong shape");
        }
    }
    
    /**
     * Compute the determinant of a submatrix specified by starting row
     * and by "active" columns.
     * @param matrix the matrix as an array of Pnts
     * @param row the starting row
     * @param columns a boolean array indicating the "active" columns
     * @return the determinant of the specified submatrix
     * @throws ArrayIndexOutOfBoundsException if dimensions are wrong
     */
    private static double determinant(Pnt[] matrix, int row, boolean[] columns) {
        if (row == matrix.length) return 1;
        double sum = 0;
        int sign = 1;
        for (int col = 0; col < columns.length; col++) {
            if (!columns[col]) continue;
            columns[col] = false;
            sum += sign * matrix[row].coordinates[col] *
                   determinant(matrix, row+1, columns);
            columns[col] = true;
            sign = -sign;
        }
        return sum;
    }
    
    /**
     * Compute generalized cross-product of the rows of a matrix.
     * The result is a Pnt perpendicular (as a vector) to each row of
     * the matrix.  This is not an efficient implementation, but should 
     * be adequate for low dimension.
     * @param matrix the matrix of Pnts (one less row than the Pnt dimension)
     * @return a Pnt perpendicular to each row Pnt
     * @throws IllegalArgumentException if matrix is wrong shape
     */
    public static Pnt cross (Pnt[] matrix) {
        int len = matrix.length + 1;
        if (len != matrix[0].dimension())
            throw new IllegalArgumentException("Dimension mismatch");
        boolean[] columns = new boolean[len];
        for (int i = 0; i < len; i++) columns[i] = true;
        double[] result = new double[len];
        int sign = 1;
        try {
            for (int i = 0; i < len; i++) {
                columns[i] = false;
                result[i] = sign * determinant(matrix, 0, columns);
                columns[i] = true;
                sign = -sign;
            }
        } catch (ArrayIndexOutOfBoundsException e) {
            throw new IllegalArgumentException("Matrix is wrong shape");
        }
        return new Pnt(result);
    }
    
    /* Pnts as simplices */
    
    /**
     * Determine the signed content (i.e., area or volume, etc.) of a simplex.
     * @param simplex the simplex (as an array of Pnts)
     * @return the signed content of the simplex
     */
    public static double content (Pnt[] simplex) {
        Pnt[] matrix = new Pnt[simplex.length];
        for (int i = 0; i < matrix.length; i++)
            matrix[i] = simplex[i].extend(new double[] {1});
        int fact = 1;
        for (int i = 1; i < matrix.length; i++) fact = fact*i;
        return determinant(matrix) / fact;
    }
    
    /**
     * Relation between this Pnt and a simplex (represented as an array of Pnts).
     * Result is an array of signs, one for each vertex of the simplex, indicating
     * the relation between the vertex, the vertex's opposite facet, and this
     * Pnt. <pre>
     *   -1 means Pnt is on same side of facet
     *    0 means Pnt is on the facet
     *   +1 means Pnt is on opposite side of facet</pre>
     * @param simplex an array of Pnts representing a simplex
     * @return an array of signs showing relation between this Pnt and the simplex
     * @throws IllegalArgumentExcpetion if the simplex is degenerate
     */
    public int[] relation (Pnt[] simplex) {
        /* In 2D, we compute the cross of this matrix:
         *    1   1   1   1
         *    p0  a0  b0  c0
         *    p1  a1  b1  c1
         * where (a, b, c) is the simplex and p is this Pnt.  The result
         * is a vector in which the first coordinate is the signed area
         * (all signed areas are off by the same constant factor) of
         * the simplex and the remaining coordinates are the *negated*
         * signed areas for the simplices in which p is substituted for
         * each of the vertices. Analogous results occur in higher dimensions.
         */
        int dim = simplex.length - 1;
        if (this.dimension() != dim)
            throw new IllegalArgumentException("Dimension mismatch");
        
        /* Create and load the matrix */
        Pnt[] matrix = new Pnt[dim+1];
        /* First row */
        double[] coords = new double[dim+2];
        for (int j = 0; j < coords.length; j++) coords[j] = 1;
        matrix[0] = new Pnt(coords);
        /* Other rows */
        for (int i = 0; i < dim; i++) {
            coords[0] = this.coordinates[i];
            for (int j = 0; j < simplex.length; j++) 
                coords[j+1] = simplex[j].coordinates[i];
            matrix[i+1] = new Pnt(coords);
        }
        
        /* Compute and analyze the vector of areas/volumes/contents */
        Pnt vector = cross(matrix);
        double content = vector.coordinates[0];
        int[] result = new int[dim+1];
        for (int i = 0; i < result.length; i++) {
            double value = vector.coordinates[i+1];
            if (Math.abs(value) <= 1.0e-6 * Math.abs(content)) result[i] = 0;
            else if (value < 0) result[i] = -1;
            else result[i] = 1;
        }
        if (content < 0) {
            for (int i = 0; i < result.length; i++) result[i] = -result[i];
        }
        if (content == 0) {
            for (int i = 0; i < result.length; i++) result[i] = Math.abs(result[i]);
        }
        return result;
    }
    
    /**
     * Test if this Pnt is outside of simplex.
     * @param simplex the simplex (an array of Pnts)
     * @return the simplex Pnt that "witnesses" outsideness (or null if not outside)
     */
    public Pnt isOutside (Pnt[] simplex) {
        int[] result = this.relation(simplex);
        for (int i = 0; i < result.length; i++) {
            if (result[i] > 0) return simplex[i];
        }
        return null;
    }
    
    /**
     * Test if this Pnt is on a simplex.
     * @param simplex the simplex (an array of Pnts)
     * @return the simplex Pnt that "witnesses" on-ness (or null if not on)
     */
    public Pnt isOn (Pnt[] simplex) {
        int[] result = this.relation(simplex);
        Pnt witness = null;
        for (int i = 0; i < result.length; i++) {
            if (result[i] == 0) witness = simplex[i];
            else if (result[i] > 0) return null;
        }
        return witness;
    }
    
    /**
     * Test if this Pnt is inside a simplex.
     * @param simplex the simplex (an arary of Pnts)
     * @return true iff this Pnt is inside simplex.
     */
    public boolean isInside (Pnt[] simplex) {
        int[] result = this.relation(simplex);
        for (int i = 0; i < result.length; i++) if (result[i] >= 0) return false;
        return true;
    }
    
    /**
     * Test relation between this Pnt and circumcircle of a simplex.
     * @param simplex the simplex (as an array of Pnts)
     * @return -1, 0, or +1 for inside, on, or outside of circumcircle
     */
    public int vsCircumcircle (Pnt[] simplex) {
        Pnt[] matrix = new Pnt[simplex.length + 1];
        for (int i = 0; i < simplex.length; i++)
            matrix[i] = simplex[i].extend(new double[] {1, simplex[i].dot(simplex[i])});
        matrix[simplex.length] = this.extend(new double[] {1, this.dot(this)});
        double d = determinant(matrix);
        int result = (d < 0)? -1 : ((d > 0)? +1 : 0);
        if (content(simplex) < 0) result = - result;
        return result;
    }
    
    /**
     * Circumcenter of a simplex.
     * @param simplex the simplex (as an array of Pnts)
     * @return the circumcenter (a Pnt) of simplex
     */
    public static Pnt circumcenter (Pnt[] simplex) {
        int dim = simplex[0].dimension();
        if (simplex.length - 1 != dim)
            throw new IllegalArgumentException("Dimension mismatch");
        Pnt[] matrix = new Pnt[dim];
        for (int i = 0; i < dim; i++) 
            matrix[i] = simplex[i].bisector(simplex[i+1]);
        Pnt hCenter = cross(matrix);      // Center in homogeneous coordinates
        double last = hCenter.coordinates[dim];
        double[] result = new double[dim];
        for (int i = 0; i < dim; i++) result[i] = hCenter.coordinates[i] / last;
        return new Pnt(result);
    }
     
    /**
     * Main program (used for testing).
     */
    public static void main (String[] args) {
        Pnt p = new Pnt(1, 2, 3);
        System.out.println("Pnt created: " + p);
        Pnt[] matrix1 = {new Pnt(1,2), new Pnt(3,4)};
        Pnt[] matrix2 = {new Pnt(7,0,5), new Pnt(2,4,6), new Pnt(3,8,1)};
        System.out.print("Results should be -2 and -288: ");
        System.out.println(determinant(matrix1) + " " + determinant(matrix2));
        Pnt p1 = new Pnt(1,1); Pnt p2 = new Pnt(-1,1);
        System.out.println("Angle between " + p1 + " and " + p2 + ": " + p1.angle(p2));
        System.out.println(p1 + " subtract " + p2 + ": " + p1.subtract(p2));
        Pnt v0 = new Pnt(0,0), v1 = new Pnt(1,1), v2 = new Pnt(2,2);
        Pnt[] vs = {v0, new Pnt(0,1), new Pnt(1,0)};
        Pnt vp = new Pnt(.1, .1);
        System.out.println(vp + " isInside " + toString(vs) + ": " + vp.isInside(vs));
        System.out.println(v1 + " isInside " + toString(vs) + ": " + v1.isInside(vs));
        System.out.println(vp + " vsCircumcircle " + toString(vs) + ": " +
                           vp.vsCircumcircle(vs));
        System.out.println(v1 + " vsCircumcircle " + toString(vs) + ": " +
                           v1.vsCircumcircle(vs));
        System.out.println(v2 + " vsCircumcircle " + toString(vs) + ": " +
                           v2.vsCircumcircle(vs));
        System.out.println("Circumcenter of " + toString(vs) + " is " + circumcenter(vs));
    }
}